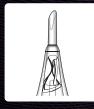

× DO NOT

Do not twist laterally when removing the lens stage



Do not use if a haptic becomes deformed or protrudes

Do not use if the leading haptic becomes twisted or extends forward

Do not use if the leading haptic becomes bent or stretched out

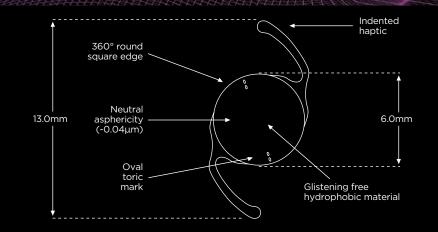
Do not use if the trailing haptic extends out

X

×

Do not use if the plunger passes above or under the lens optic or bends the optic irregularly

Do not use if the plunger has moved too far towards the left or right side


Do not use if the lens becomes exposed at the nozzle tip before insertion

TECHNICAL SPECIFICATION

www.avanseetoriccalculator.com (toric calculator)

	/////							ALT THE	444	the same of the sa		
	Model		YP-Tx				СР-Тх					
3	Colour		Yellow				Clear					
8	Material		Hydrophobic soft acrylic									
箋	UV-Filter		V				V					
8	Blue light filter		V									
	Overall / Optical length		13mm / 6mm									
	Spherical Aberration (SA)		-0.04µm									
8	Configuration of lens	Biconvex / Modified C-loop										
	Recommended incision size		2.2mm sclera cornea									
			2.4mm cornea									
	Spherical Power range A-Constant (Ultrasound)*		+6.0 to +26.0 dioptre:									
ŝ			+6.0 to +10.0 dioptre (1.0 D increments)									
			+10.0 to +26.0 dioptre (0.5 D increments)									
8			118.6									
	Optimised IOL Constants (Optical)*	Haigis	a0 = 1.557									
			a1 = 0.400									
			a2 = 0.100									
		HofferQ	pACD = 5.69									
		Holladay	Sf = 1.87									
		SRK/T	119.03									
		SRK II	119.32									
		Barrett	LF = 1.90									
			DF = 5									
	Cylinder Powers		YP-Tx / CP-Tx	T2	T3	T4	T5	T6	T7	T8	T9	
			IOL plane	0.75	1.50	2.25	3.00	3.75	4.50	5.25	6.00	
			Corneal plane	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	

*A-constants are presented as a starting point (reference value) for the lens power calculation When calculating the exact lens power, it is recommended that calculations should be performed individually based on equipment used and the operating surgeon's own experience.

www.avansee.eu (product information)

IOL, intraocular lens; OVD, ophthalmic viscosurgical device; UV, ultraviolet. Reference: 1. Avansee™ Preload1P Toric Package Insert. 2019. Date of preparation: September 2023 | IOL23 00010

avansee preload 1P TORIC

AGUIDETO USING AVANSEE PRELOAD1P

Kowa's Avansee™ Preload1P Toric IOL is placed in the capsular bag and is designed for implantation after extracapsular cataract extraction or phacoemulsification of cataracts.¹

In the instance of visual correction of aphakia with corneal astigmatism, the IOL is positioned in the posterior chamber of the eye, replacing the natural crystalline lens.¹

INSTRUCTIONS FOR USE

In a sterile environment, the circulating nurse opens the blister packaging, and either the scrub nurse or surgeon removes the Avansee Preload1P Toric.

PREPARATION

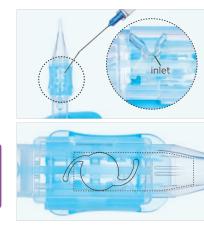
Avansee™ Preload1P Toric is prepared for insertion in 3 simple steps:

1 Injecting the ophthalmic viscosurgical device (OVD)

Insert the OVD needle deeply, **only into the inlet**, and inject the OVD up to the dashed line as shown, filling the nozzle and covering the entire lens optic. Inject at least **0.17ml** of OVD, using an OVD needle with 25 gauge or greater. The OVD must be injected before removing the lens stage.

The OVD needle should be inserted through the inlet in a vertical fashion until the tip of the needle touches the bottom surface.

Supporting the main injector body, slowly remove the lens stage, keeping it straight and without it twisting away from the injector body.

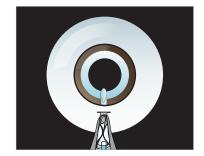


Push the plunger at a constant rate to move the IOL forward; stopping at the point when the IOL optic is rolled and its edges make secure contact. Once the plunger is advanced, the IOL must be inserted into the eye within 20 seconds.

Positioning of the lens is best completed smoothly, within 2 seconds and in a single action.

Failure to push the plunger until the edges of the lens make secure contact, will increase the likelihood of an unsuccessful lens injection.

For best results, all 3 preparation steps should flow continuously, without interruption.



IMPLANTATION

1 Insertion

Insert the nozzle tip until the bevel (opening part of the nozzle) completely penetrates the anterior chamber.

2 Release

Keeping the inlet (Kowa mark) upward, push the plunger ahead at a constant rate and release the IOL inside the capsular bag. Continue to push the plunger until the trailing haptic is completely released.

3 Removal of injector

Check the lens positioning and remove the nozzle from the eye.

The trailing haptic MUST be released into the eye before the removal of the nozzle.

4 Alignment

Rotate the IOL in a clockwise fashion until just before the intended axis. Remove the OVD from the eye and align the (oval) toric marks with the intended axis.

